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1. Introduction and Statement of the Optimal Control Problem

This is the fourth lecture on the optimal control of systems with distributed parameters. Let
us first recall the problem. It is required to minimize the functional

J(v) =
∫ l

0
|u(x, T ; v)− h(x)|2 dx (1)

on a control set

V =
{
v = (p, f) ∈ H = L2[0, T ]× L2(Q); pmin ≤ p ≤ pmax a.e. 0 ≤ t ≤ T ; ‖f‖L2(Q) ≤ R

}
(2)

where u = u(x, t; v) ∈ V 1,0
2 (Q) solves the problem

∂u

∂t
= a2∂

2u

∂x2 + f, in Q = {(x, t) : 0 < x < l, 0 < t ≤ T} (3)

∂u(0, t)
∂x

= 0, ∂u(l, t)
∂x

= ν[p(t)− u(l, t)], 0 < t ≤ T (4)

u(x, 0) = φ(x), 0 ≤ x ≤ l (5)

where pmin < pmax, 0 < R, φ,w are given. Recall that u ∈ V 1,0
2 (Q) is a solution of (3)–(5) if∫ T

0

∫ l

0

(
−uψt + a2uxψx − fψ

)
dx dt+

∫ l

0
u(x, T )ψ(x, T ) dx−

−
∫ l

0
φ(x)ψ(x, 0) dx− a2ν

∫ T

0
[p(t)− u(l, t)]ψ(l, t) dt = 0

for all ψ ∈ W 1,1
2 (Q). On the Hilbert space H of elements v =

(
p(t), f(x, t)

)
define the inner

product

〈v1, v2〉 =
∫ T

0
p1(t)p2(t) dt+

∫ T

0

∫ l

0
f1(x, t)f2(x, t) dx dt (6)

and the norm
‖v‖H = 〈v, v〉1/2 =

(
‖p‖2

L2
+ ‖f‖2

L2

)1/2

In this lecture we will prove the convexity of the functional J , give a necessary and sufficient
optimality condition for a general problem J(u)→ inf on a convex subset U of an Hilbert space,
and discuss the application of this optimality condition to the problem (1)–(5).

Recall the following

Definition 1 (Convexity of a set). A set U is called convex if for arbitrary u, v ∈ U and any
α ∈ [0, 1], it follows that

αu+ (1− α)v ∈ U
1
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Definition 2 (Convexity of a function). Let U be a convex set. A function J : U → R is called
convex on U if

J
(
αu+ (1− α)v

)
≤ αJ(u) + (1− α)J(v) (7)

for all u, v ∈ U and all α ∈ [0, 1]. J is called strictly convex if equality in (7) is only possible
when α = 0 or α = 1.

2. Convexity of the cost functional J

First of all, observe that the solution u = u(x, t; v) of the PDE problem (3)–(5) depends linearly
on v, since the problem is linear and the solution in V 1,0

2 (Q) is unique. In particular,

u(x, t;αv + (1− α)w) = αu(x, t; v) + (1− α)u(x, t;w)

Then we have

J(αv + (1− α)w) =
∫ l

0
|u(x, T ;αv + (1− α)w)− h(x)|2 dx

=
∫ l

0
|αu(x, t; v) + (1− α)u(x, t;w)− h(x)|2 dx

=
∫ l

0

∣∣∣α(u(x, t; v)− h(x)
)

+ (1− α)
(
u(x, t;w)− h(x)

)∣∣∣2 dx
= α2 〈u(x, T ; v)− h(x), u(x, T ; v)− h(x)〉+

+ (1− α)2 〈u(x, T ;w)− h(x), u(x, T ;w)− h(x)〉+
+ 2α(1− α) 〈u(x, T ; v)− h(x), u(x, T ;w)− h(x)〉

= αJ(v) + (1− α)J(w)− α(1− α) 〈u(x, T ; v)− h(x), u(x, T ; v)− h(x)〉−
− α(1− α) 〈u(x, T ;w)− h(x), u(x, T ;w)− h(x)〉+
+ 2α(1− α) 〈u(x, T ; v)− h(x), u(x, T ;w)− h(x)〉

so

J(αv + (1− α)w) = αJ(v) + (1− α)J(w)−
− α(1− α) 〈u(x, T ; v)− u(x, T ;w), u(x, T ; v)− u(x, T ;w)〉

That is,

J(αv + (1− α)w) = αJ(v) + (1− α)J(w)− α(1− α) ‖u(x, T ; v − w)‖2
L2[0,l] (8)

In particular,

J(αv + (1− α)w) ≤ αJ(v) + (1− α)J(w) ∀v, w ∈ V, α ∈ [0, 1]

We have proved that the functional J(v) is conves on V .

3. Optimality Conditions in Banach Space

We will now derive necessary and sufficient conditions for minimality of functionals over
Banach spaces; they are of the same spirit as the familiar optimality conditions in finite
dimensional space, but established in a general context.
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Theorem 1. Let U be a convex subset of the Banach space B, and consider the problem

J(u)→ min on U (9)
Suppose J(u) ∈ C1(U), and denote by

U∗ =
{
u ∈ U : J(u) = J∗ = inf

U
J(u)

}
(10)

the set of solutions to (9). For every u∗ ∈ U∗, the following necessary condition is satisfied:

〈J ′(u∗), u− u∗〉 ≥ 0 ∀u ∈ U (11)
If u∗ ∈ int(U), condition (11) is equivalent to

J ′(u∗) = 0 (12)
Moreover, if J(u) is convex on U , then (11) is also a sufficient condition to assert that the element
u∗ ∈ U∗.

Proof.

Necessity: Let u∗ ∈ U∗, then for every u ∈ U , and every α ∈ [0, 1] we have

0 ≤ J
(
u∗ + α(u− u∗)

)
− J(u∗) = 〈J ′(u∗), α(u− u∗)〉+ o(α)

Dividng through by α we have

0 ≤ 〈J ′(u∗), u− u∗〉+ o(α)
α

Passing to the limit as α ↓ 0, (11) follows.
If u∗ ∈ intU∗, then for all e ∈ B with ‖e‖ = 1 there exists ε0 > 0 such that u∗+ εe ∈ U

for |ε| < ε0. Hence
0 ≤ 〈J ′(u∗), εe〉 = ε 〈J ′(u∗), e〉

By taking 0 < ε < ε0 or −ε0 < ε < 0 and dividing through by ε it follows that

0 = 〈J ′(u∗), e〉
Since e is arbitrary, J ′(u∗) must be the zero element in B∗.

Sufficiency: Assume that J(u) ∈ C1(U) is convex on U and for some u∗ ∈ U , (11) is
satisfied. We will prove sufficiency with the help of the following

Claim 1. J(u) ∈ C1(U) is convex if and only if
J(u) ≥ J(v) + 〈J ′(v), u− v〉 ∀u, v ∈ U (13)

Proof.

“only if”: If J(u) ∈ C1(U) is convex,

J
(
αu+ (1− α)v

)
≤ αJ(u) + (1− α)J(v)

Therefore

J
(
αu+ (1− α)v

)
− J(v) ≤ α

(
J(u)− J(v)

)
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By definition of Frechet differentiability, the left-hand side can be rewritten as〈
J ′
(
v + θα(u− v)

)
, α(u− v)

〉
≤ α

(
J(u)− J(v)

)
Divide both sides by α and pass to the limit as α ↓ 0 to derive

〈J ′(v), u− v〉 ≤ J(u)− J(v)

which implies (13)
“if”: Fix u, v ∈ U and define

uα = αu+ (1− α)v

Suppose J(u) ∈ C1(U) satisfies (13). Then

J(u)− J(uα) ≥ 〈J ′(uα), u− uα〉 J(v)− J(uα) ≥ 〈J ′(uα), v − uα〉

Multiplying the former inequality by α, the latter by 1− α, and adding gives

αJ(u) + (1− α)J(v)− J(uα) ≥ 〈J ′(uα), uα − uα〉 = 0

It follows that

J(uα) ≤ αJ(u) + (1− α)J(v)

which is (7)
Claim is proved. �

Now, by choosing v = u∗ in (13) we have

J(u) ≥ J(u∗) + 〈J ′(u∗), u− u∗〉 , ∀u ∈ U

and by (11) we have

J(u) ≥ J(u∗), ∀u ∈ U
That is, u∗ ∈ U∗. �

4. Optimality Condition applied to (1)–(5)

Recall that we proved the following

Theorem 2. When φ ∈ L2[0, l], J(v) is Frechet differentiable at v ∈ V and

J ′(v) =
(
a2νψ(l, t), ψ(x, t)

)
∈ H (14)

where ψ = ψ(x, t) ∈ V 1,0
2 (Q) is a weak solution of the problem

ψt + a2ψxx = 0, 0 < x < l, 0 ≤ t < T (15)

ψx(0, t) = 0, ψx(l, t) + νψ(l, t) = 0, 0 < t < T (16)

ψ(x, T ) = 2
(
u(x, T ; v)− h(x)

)
, 0 ≤ x ≤ l (17)
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Since J(v) is convex, it follows that the necessary and sufficient condition for the optimality
of a control

v∗ =
(
p∗(t), f∗(x, t)

)
∈ U

is the following inequality

0 ≤ 〈J ′(u∗), u− u∗〉H =
∫ T

0
a2νψ(l, t;u∗)

(
p(t)− p∗(t)

)
dt

+
∫ T

0

∫ l

0
ψ(x, t;u∗)

(
f(x, t)− f∗(x, t)

)
dx dt

for all v =
(
p(t), f(x, t)

)
∈ U . Note that ψ ∈ V 1,0

2 (Q) is a weak solution of the adjoint
problem (15)–(17); from the proof of Frechet differentiability of J it follows that an equivalent
formulation of the necessary and sufficient condition is∫ l

0

(
u(x, T ;u∗)− h(x)

)(
u(x, T ; v)− u(x, T ;u∗)

)
dx ≥ 0 ∀v ∈ V
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