Topological Dynamics and Universality in Chaos
III. Proof of Sharkovski’s Theorem

Ugur G. Abdulla

FIT Colloquium

June 2, 2014
Theorem 1
(Sharkovsky, 1964) Let the positive integers be totally ordered in the following way:

\[1 \succ 2 \succ 2^2 \succ 2^3 \succ \ldots \succ 2^2 \cdot 5 \succ 2^2 \cdot 3 \succ \ldots \succ 2 \cdot 5 \succ 2 \cdot 3 \succ \ldots \succ 7 \succ 5 \succ 3 \]

If \(f \) has a cycle of period \(n \) and \(m \succ n \), then \(f \) also has a periodic orbit of period \(m \).

Lemma 2
If \(J \) is a compact subinterval such that \(J \subseteq f(J) \), then \(f \) has a fixed point in \(J \).

Lemma 3
If \(J, K \) are compact subintervals such that \(K \subseteq f(J) \), then there is a compact subinterval \(L \subseteq J \) such that \(f(L) = K \).
Lemma 4
If J_0, J_1, \ldots, J_m are compact subintervals such that $J_k \subseteq f(J_{k-1})$ $(1 \leq k \leq m)$, then there is a compact subinterval $L \subseteq J_0$ such that $f^m(L) = J_m$ and $f^k(L) \subseteq J_k$ $(1 \leq k < m)$. If also $J_0 \subseteq J_m$, then there exists a point y such that $f^m(y) = y$ and $f^k(y) \in J_k$ $(0 \leq k < m)$.

Lemma 5
Between any two points of a periodic orbit of period $n > 1$ there is a point of a periodic orbit of period less than n.

Let $B = \{x_1 < x_2 < \cdots < x_n\}$ be n-orbit of f.

Definition 1.1
If $f(x_i) = x_{s_i}, 1 \leq s_i \leq n, i = 1, 2, \ldots, n$, then B is associated with cyclic permutation

$$
\begin{bmatrix}
1 & 2 & \ldots & n \\
S_1 & S_2 & \ldots & S_n
\end{bmatrix}
$$
Definition 1.2

Let $I_i = [x_i, x_{i+1}]$. Digraph of a cycle is a directed graph of transitions with vertices $I_1, I_2, \ldots, I_{n-1}$ and oriented edges $I_i \to I_s$ if $I_s \subseteq f(I_i)$.

Properties of Digraphs:

1. $\forall I_j \exists$ at least one I_k for which $I_j \to I_k$. Moreover, it is always possible to choose $k \neq j$, unless $n = 2$.

2. $\forall I_k \exists$ at least one I_j for which $I_j \to I_k$. Moreover, it is always possible to choose $j \neq k$, unless n is even and $k = \frac{n}{2}$.

3. Digraph always contains a loop: $I_k \to I_k$.
Definition 1.3
Given \(n \)-orbit, a cycle

\[J_0 \rightarrow J_1 \rightarrow \cdots \rightarrow J_{n-1} \rightarrow J_0 \]

of length \(n \) in the digraph is called a **Fundamental Cycle** (FC) if \(J_0 \) contains an endpoint \(c \) s.t. \(f^k(c) \) is an endpoint of \(J_k \) for \(1 \leq k < n \).

FC always exists and unique. In the FC some vertex must occur at least twice among \(J_0, \ldots, J_{n-1} \), since digraph has only \(n - 1 \) vertices. On the other hand, every vertex occurs at most twice, since interval \(I_k \) has two endpoints.

Definition 1.4
Cycle in a digraph is said to be primitive if it does not consist entirely of a cycle of smaller length described several times.

If FC contains \(I_k \) twice then it can be decomposed into two cycles of smaller length, each of which contains \(I_k \) once, and consequently is primitive.
Lemma 6
Suppose \(f \) has a periodic point of period \(n > 1 \). If the associated digraph contains a primitive cycle

\[
J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0
\]

of length \(m \), then \(f \) has a periodic point \(y \) of period \(m \) such that \(f^k(y) \in J_k (0 \leq k < m) \).

Suppose \(f \) has a 3-orbit: \(f(c) < c < f^2(c) \) with corresponding digraph

\[
\circlearrowleft I_1 \Leftrightarrow I_2
\]

\(I_1 \to I_1 \Rightarrow \) there is a fixed point; \(I_1 \to I_2 \to I_1 \Rightarrow \) there is a 2-orbit

\(\forall \) positive integer \(m > 2 \) there is an \(m \)-orbit corresponding to primitive cycle of length \(m \): \(I_1 \to I_2 \to I_1 \to I_1 \to \cdots \to I_1 \)

Lemma 7
If \(f \) has a periodic point of period \(> 1 \), then it has a fixed point and a periodic point of period 2.
Lemma 8
Suppose \(f \) has a periodic orbit of odd period \(n > 1 \), but no periodic orbit of odd period strictly between 1 and \(n \). If \(c \) is the midpoint of the orbit of odd period \(n \), then the points of this orbit have the order

\[
\begin{align*}
 f^{n-1}(c) &< f^{n-3}(c) < \cdots < f^2(c) < c < f(c) < \cdots < f^{n-2}(c) \\
\end{align*}
\]

or the inverse order

\[
\begin{align*}
 f^{n-2}(c) &< \cdots < f(c) < c < f^2(c) < \cdots < f^{n-3}(c) < f^{n-1}(c) \\
\end{align*}
\]

and associated digraph is given in the figure, where \(J_1 = < c, f(c) > \) and \(J_k = < f^{k-2}(c), f^k(c) > \) for \(1 < k < n \).
Lemma 9
If \(f \) has a periodic orbit of odd period \(n > 1 \), then it has periodic points of arbitrary even order and periodic points of arbitrary odd order > \(n \).

Proof. We may assume \(n \) is minimal. Then digraph is a Stefan graph as in Lemma 8. If \(m < n \) is even then

\[
J_{n-1} \to J_{n-m} \to J_{n-m+1} \to \cdots \to J_{n-1}
\]

is a primitive cycle of length \(m \). If \(m > n \) is even or odd then

\[
J_1 \to J_2 \to \cdots \to J_{n-1} \to J_1 \to J_1 \to \cdots \to J_1
\]

is a primitive cycle of length \(m \). \(\square \)
Proof of Sharkovski’s Theorem

Lemma 10
If \(c \) is a periodic point of \(f \) with period \(n \) then for any positive integer \(h \), \(c \) is a periodic point of \(f^h \) with period \(\frac{n}{(h,n)} \), where \((h,n) \) denotes the greatest common divisor of \(h \) and \(n \).
Conversely, if \(c \) is a periodic point of \(f^h \) with period \(m \) then \(c \) is a periodic point of \(f \) with period \(\frac{mh}{d} \), where \(d \) divides \(h \) and is relatively prime to \(m \).
Lemma 10

If c is a periodic point of f with period n then for any positive integer h, c is a periodic point of f^h with period $\frac{n}{(h,n)}$, where (h,n) denotes the greatest common divisor of h and n.

Conversely, if c is a periodic point of f^h with period m then c is a periodic point of f with period $\frac{mh}{d}$, where d divides h and is relatively prime to m.

Proof. Suppose c has period n for f and let $m = \frac{n}{(h,n)}$. We have

$$f^{mh}(c) = f^{\frac{nh}{(h,n)}}(c) = c$$

On the other hand, if $f^{kh}(c) = c$ then n must be a factor of kh, say $kh = dn$. This implies that m is a factor of k. Indeed

$$k = \frac{dn}{h} = \frac{n}{(h,n)} \frac{d(h,n)}{h} = m \frac{dh}{h} \frac{dn}{h} = m \frac{dh}{h} \frac{kh}{h} = m(d,k)$$

Hence, c is m-periodic point for f^h and first assertion is proved.
Suppose now that c has period m for f^h. Then c has a period n for f where n is a factor of mh, say $n = \frac{mh}{d}$. From the first assertion of lemma it follows that

$$m = \frac{n}{(h, n)} = \frac{nd}{h} \Rightarrow h = d(h, n) = de$$

and

$$(de, me) = (h, m(h, n)) = (h, n) = e \Rightarrow (d, m) = 1$$
Let $n = 2^d q$, where q is odd. First assume $q = 1$ and $m = 2^e$, where $0 \leq e < d$. By Lemma 7 we may assume $e > 0$. Prove that $m \succ n$.

Consider a map $g = f^{m/2}$ and apply first assertion of the Lemma 10 with $h = m/2 = 2^{e-1}$, $n = 2^d$. It follows that g has a periodic point c of period

$$
\frac{n}{(h, n)} = \frac{2^d}{(2^{e-1}, 2^d)} = 2^{d-e+1}
$$

Lemma 7 \Rightarrow g has a periodic point of period 2. Apply second part of Lemma 10 with $h = m/2 = 2^{e-1}$ and $m = 2$: periodic point of $f^{2^{e-1}}$ with period 2, is a periodic point of f with the period

$$
\frac{2 \cdot 2^{e-1}}{d} = \frac{2^e}{d},
$$

where d is a factor of 2^{e-1} which is relatively prime with 2. Hence, $d = 1$, and f has a periodic point of period $m = 2^e$.
Now let \(n = 2^d q \), where \(q > 1 \) is odd. It remains to prove \(m \succ n \) for \(m = 2^d r \), where either (i) \(r \) is even, or (ii) \(r \) is odd and \(r > q \). Consider a map \(g = f^{2^d} \). Apply first part of Lemma 10 with \(h = 2^d \) and \(n = 2^d q \). It follows that \(g \) has a periodic point of period

\[
\frac{n}{(h, n)} = \frac{2^d q}{(2^d, 2^d q)} = \frac{2^d q}{2^d} = q.
\]

Lemma 9 \(\Rightarrow \) \(g \) has a periodic point of period \(r \). Now apply second assertion of the Lemma 10 with \(h = 2^d \) and \(m = r \). This point is a periodic point for \(f \) with the period \(mh/\bar{d} = r2^d/\bar{d} \), where \(\bar{d} \) divides \(2^d \) and relatively prime to \(r \). In case (i) \(\bar{d} = 1 \) and \(f \) has a periodic point of period \(2^d r \) as required. In case (ii) \(\bar{d} \) is some power of 2, and \(f \) has periodic point of period \(2^e r \) for some \(e \leq d \). If \(e = d \) then we are done. If \(e < d \) we can replace \(n \) by \(2^e r \). Since \(m = 2^e (2^d - e r) \) it then follows from the case (i) that \(f \) also has a periodic point of period \(m \). \qed