Topological Dynamics and Universality in Chaos II. Proof of Sharkovski's Theorem

Ugur G. Abdulla

FIT Colloquium

June 2, 2014

Sharkovski's Theorem

Theorem 1

(Sharkovsky, 1964) Let the positive integers be totally ordered in the following way:

$$1 \succ 2 \succ 2^2 \succ 2^3 \succ \ldots \succ 2^2 \cdot 5 \succ 2^2 \cdot 3 \succ \ldots \succ 2 \cdot 5 \succ 2 \cdot 3 \succ \ldots \succ 7 \succ 5 \succ 3$$

If f has a cycle of period n and $m \succ n$, then f also has a periodic orbit of period m.

Lemma 2

If J is a compact subinterval such that $J \subseteq f(J)$, then f has a fixed point in J.

Lemma 3

If J,K are compact subintervals such that $K\subseteq f(J)$, then there is a compact subinterval $L\subseteq J$ such that f(L)=K.

Lemma 4

If $J_0, J_1, ..., J_m$ are compact subintervals such that $J_k \subseteq f(J_{k-1})$ $(1 \le k \le m)$, then there is a compact subinterval $L \subseteq J_0$ such that $f^m(L) = J_m$ and $f^k(L) \subseteq J_k$ $(1 \le k < m)$. If also $J_0 \subseteq J_m$, then there exists a point y such that $f^m(y) = y$ and $f^k(y) \in J_k$ $(0 \le k < m)$.

Lemma 5

Between any two points of a periodic orbit of period n > 1 there is a point of a periodic orbit of period less than n.

Let $\mathbf{B} = \{x_1 < x_2 < \dots < x_n\}$ be *n*-orbit of f.

Definition 1.1

If $f(x_i) = x_{s_i}, 1 \le s_i \le n, i = 1, 2, ..., n$, then **B** is associated with cyclic permutation

$$\begin{bmatrix} 1 & 2 & \dots & n \\ s_1 & s_2 & \dots & s_n \end{bmatrix}$$

Definition 1.2

Let $I_i = [x_i, x_{i+1}]$. Digraph of a cycle is a directed graph of transitions with vertices I_1, I_2, \dots, I_{n-1} and oriented edges $I_i \to I_s$ if $I_s \subseteq f(I_i)$.

Properties of Digraphs:

- 1. $\forall I_j \exists$ at least one I_k for which $I_j \to I_k$. Moreover, it is always possible to choose $k \neq j$, unless n = 2.
- 2. $\forall I_k \exists$ at least one I_j for which $I_j \to I_k$. Moreover, it is always possible to choose $j \neq k$, unless n is even and $k = \frac{n}{2}$.
- 3. Digraph always contains a loop: $I_k \to I_k$.

Fundamental Cycle

Definition 1.3

Given n-orbit, a cycle

$$J_0 \to J_1 \to \cdots \to J_{n-1} \to J_0$$

of length n in the digraph is called a **Fundamental Cycle** (FC) if J_0 contains an endpoint c s.t. $f^k(c)$ is an endpoint of J_k for $1 \le k < n$. FC always exists and unique.

Fundamental Cycle

Definition 1.3

Given n-orbit, a cycle

$$J_0 \to J_1 \to \cdots \to J_{n-1} \to J_0$$

of length n in the digraph is called a **Fundamental Cycle** (FC) if J_0 contains an endpoint c s.t. $f^k(c)$ is an endpoint of J_k for $1 \le k < n$.

FC always exists and unique. In the FC some vertex must occur at least twice among $J_0, ..., J_{n-1}$, since digraph has only n-1 vertices.

Fundamental Cycle

Definition 1.3

Given n-orbit, a cycle

$$J_0 \to J_1 \to \cdots \to J_{n-1} \to J_0$$

of length n in the digraph is called a **Fundamental Cycle** (FC) if J_0 contains an endpoint c s.t. $f^k(c)$ is an endpoint of J_k for $1 \le k < n$.

FC always exists and unique. In the FC some vertex must occur at least twice among $J_0,...,J_{n-1}$, since digraph has only n-1 vertices. On the other hand, every vertex occurs at most twice, since interval I_k has two endpoints.

Definition 1.4

Cycle in a digraph is said to be primitive if it does not consisit entirely of a cycle of smaller length described several times.

If FC contains I_k twice then it can be decomposed into two cycles of smaller length, each of which contains I_k once, and consequently is primitive.

Straffin's Lemma

Lemma 6

Suppose f has a periodic point of period n>1. If the associated digraph contains a primitive cycle

$$J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0$$

of length m, then f has a periodic point y of period m such that $f^k(y) \in J_k(0 \le k < m)$.

Straffin's Lemma

Lemma 6

Suppose f has a periodic point of period n>1. If the associated digraph contains a primitive cycle

$$J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0$$

of length m, then f has a periodic point y of period m such that $f^k(y) \in J_k(0 \le k < m)$.

Proof.
$$J_1 \subseteq f(J_0), J_2 \subseteq f(J_1), \cdots, J_{m-1} \subseteq f(J_{m-2}), J_0 \subseteq f(J_{m-1})$$

Straffin's Lemma

Lemma 6

Suppose f has a periodic point of period n>1. If the associated digraph contains a primitive cycle

$$J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0$$

of length m, then f has a periodic point y of period m such that $f^k(y) \in J_k(0 \le k < m)$.

Proof.
$$J_1 \subseteq f(J_0), J_2 \subseteq f(J_1), \cdots, J_{m-1} \subseteq f(J_{m-2}), J_0 \subseteq f(J_{m-1})$$

Lemma 4 (w. $J_m = J_0$) $\Rightarrow \exists y \in J_0 \ f^m(y) = y, \ f^k(y) \in J_k (0 \le k < m)$

Straffin's Lemma

Lemma 6

Suppose f has a periodic point of period n>1. If the associated digraph contains a primitive cycle

$$J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0$$

of length m, then f has a periodic point y of period m such that $f^k(y) \in J_k(0 \le k < m)$.

Proof. $J_1 \subseteq f(J_0), J_2 \subseteq f(J_1), \cdots, J_{m-1} \subseteq f(J_{m-2}), J_0 \subseteq f(J_{m-1})$ Lemma 4 (w. $J_m = J_0$) $\Rightarrow \exists y \in J_0 \ f^m(y) = y, \ f^k(y) \in J_k (0 \le k < m)$ Either m is a period of y or period of y is a factor of m.

Straffin's Lemma

Lemma 6

Suppose f has a periodic point of period n>1. If the associated digraph contains a primitive cycle

$$J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0$$

of length m, then f has a periodic point y of period m such that $f^k(y) \in J_k(0 \le k < m)$.

Proof. $J_1 \subseteq f(J_0), J_2 \subseteq f(J_1), \cdots, J_{m-1} \subseteq f(J_{m-2}), J_0 \subseteq f(J_{m-1})$ Lemma 4 (w. $J_m = J_0$) $\Rightarrow \exists \ y \in J_0 \ f^m(y) = y, \ f^k(y) \in J_k (0 \le k < m)$ Either m is a period of y or period of y is a factor of m. If y is not an endpoint of J_0 , then m is a period of y since cycle is primitive.

Straffin's Lemma

Lemma 6

Suppose f has a periodic point of period n>1. If the associated digraph contains a primitive cycle

$$J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0$$

of length m, then f has a periodic point y of period m such that $f^k(y) \in J_k(0 \le k < m)$.

Proof. $J_1 \subseteq f(J_0), J_2 \subseteq f(J_1), \cdots, J_{m-1} \subseteq f(J_{m-2}), J_0 \subseteq f(J_{m-1})$ Lemma 4 (w. $J_m = J_0$) $\Rightarrow \exists \ y \in J_0 \ f^m(y) = y, \ f^k(y) \in J_k (0 \le k < m)$ Either m is a period of y or period of y is a factor of m. If y is not an endpoint of J_0 , then m is a period of y since cycle is primitive. Assume y is an endpoint of J_0 .

Lemma 6

Suppose f has a periodic point of period n>1. If the associated digraph contains a primitive cycle

$$J_0 \to J_1 \to \cdots \to J_{m-1} \to J_0$$

of length m, then f has a periodic point y of period m such that $f^k(y) \in J_k(0 \le k < m)$.

Proof. $J_1\subseteq f(J_0), J_2\subseteq f(J_1), \cdots, J_{m-1}\subseteq f(J_{m-2}), J_0\subseteq f(J_{m-1})$ Lemma 4 (w. $J_m=J_0)\Rightarrow\exists\ y\in J_0\ f^m(y)=y,\ f^k(y)\in J_k(0\le k< m)$ Either m is a period of y or period of y is a factor of m. If y is not an endpoint of J_0 , then m is a period of y since cycle is primitive. Assume y is an endpoint of J_0 . Since y is an element of n-orbit $\Rightarrow n$ is a divisor of m. We have $J_k\subseteq f(J_{k-1})$ and $f^k(y)\in J_k\Rightarrow J_k$ is defined uniquely and moreover, cycle is a multiple of the FC. This is a contradiction, unless n=m, since cycle is primitive. \square

Straffin's Lemma $\Rightarrow 3 \prec m \prec 2 \prec 1$

Suppose f has a 3-orbit: $f(c) < c < f^2(c)$ with corresponding digraph

$$\circlearrowright I_1 \rightleftarrows I_2$$

Straffin's Lemma $\Rightarrow 3 \prec m \prec 2 \prec 1$

Suppose f has a 3-orbit: $f(c) < c < f^2(c)$ with corresponding digraph

$$\circlearrowright I_1 \rightleftarrows I_2$$

 $I_1 \rightarrow I_1 \Rightarrow$ there is a fixed point;

Straffin's Lemma $\Rightarrow 3 \prec m \prec 2 \prec 1$

Suppose f has a 3-orbit: $f(c) < c < f^2(c)$ with corresponding digraph

$$\circlearrowright I_1 \rightleftarrows I_2$$

 $I_1 o I_1 \Rightarrow$ there is a fixed point; $I_1 o I_2 o I_1 \Rightarrow$ there is a 2-orbit

Straffin's Lemma $\Rightarrow 3 \prec m \prec 2 \prec 1$

Suppose f has a 3-orbit: $f(c) < c < f^2(c)$ with corresponding digraph

$$\circlearrowright I_1 \rightleftarrows I_2$$

 $I_1 o I_1 \Rightarrow$ there is a fixed point; $I_1 o I_2 o I_1 \Rightarrow$ there is a 2-orbit \forall positive integer m>2 there is an m-orbit corresponding to primitive cycle of length $m\colon I_1 o I_2 o I_1 o I_1 o \cdots o I_1$

Straffin's Lemma $\Rightarrow 3 \prec m \prec 2 \prec 1$

Suppose f has a 3-orbit: $f(c) < c < f^2(c)$ with corresponding digraph

$$\circlearrowright I_1 \rightleftarrows I_2$$

 $I_1 o I_1 \Rightarrow$ there is a fixed point; $I_1 o I_2 o I_1 \Rightarrow$ there is a 2-orbit \forall positive integer m>2 there is an m-orbit corresponding to primitive cycle of length $m\colon I_1 o I_2 o I_1 o I_1 o \cdots o I_1$

Lemma 7

If f has a periodic point of period > 1, then it has a fixed point and a periodic point of period 2.

Straffin's Lemma $\Rightarrow 3 \prec m \prec 2 \prec 1$

Suppose f has a 3-orbit: $f(c) < c < f^2(c)$ with corresponding digraph

$$\circlearrowright I_1 \rightleftarrows I_2$$

 $I_1 \to I_1 \Rightarrow$ there is a fixed point; $I_1 \to I_2 \to I_1 \Rightarrow$ there is a 2-orbit \forall positive integer m>2 there is an m-orbit corresponding to primitive cycle of length $m\colon I_1 \to I_2 \to I_1 \to I_1 \to \cdots \to I_1$

Lemma 7

If f has a periodic point of period > 1, then it has a fixed point and a periodic point of period 2.

Proof. Digraph has a loop \Rightarrow there is a fixed point. Let n>1 be the least positive integer such that f has a periodic point of period n. If n>2 decompose FC into two primitive cycles. Since at least one of these has length greater than 1, by Straffin's lemma we deduce there is a periodic point of period strictly between 1 and n.

Lemma 8

Suppose f has a periodic orbit of odd period n>1, but no periodic orbit of odd period strictly between 1 and n. If c is the midpoint of the orbit of odd period n, then the points of this orbit have the order

$$f^{n-1}(c) < f^{n-3}(c) < \dots < f^2(c) < c < f(c) < \dots < f^{n-2}(c)$$

or the inverse order

$$f^{n-2}(c) < \dots < f(c) < c < f^2(c) < \dots < f^{n-3}(c) < f^{n-1}(c)$$

and associated digraph is given in the figure, where $J_1 = < c, f(c) >$ and $J_k = < f^{k-2}(c), f^k(c) >$ for 1 < k < n.

Proof of Lemma 8

Proof. Decompose FC into two primitive cycles, one of which has odd length.

Proof of Lemma 8

Proof. Decompose FC into two primitive cycles, one of which has odd length. Its length must be 1!

Proof of Lemma 8

Proof. Decompose FC into two primitive cycles, one of which has odd length. Its length must be 1! Thus FC has the form

$$J_1 \to J_1 \to J_2 \to \cdots \to J_{n-1} \to J_1$$

where $J_i \neq J_1$ for 1 < i < n. If $J_i = J_k$, 1 < i < k < n, then we obtain a smaller primitive cycle, and by excluding the loop at J_1 if necessary, we can arrange that its length is odd. Hence, $J_1,...,J_{n-1}$ are all distinct and thus a permutation of $I_1,...,I_{n-1}$. Similarly, we cannot have $J_i \to J_k$ if k > i+1 or if k=1 and $i \neq 1,n-1$.

Proof of Lemma 8

Proof. Decompose FC into two primitive cycles, one of which has odd length. Its length must be 1! Thus FC has the form

$$J_1 \to J_1 \to J_2 \to \cdots \to J_{n-1} \to J_1$$

where $J_i \neq J_1$ for 1 < i < n. If $J_i = J_k$, 1 < i < k < n, then we obtain a smaller primitive cycle, and by excluding the loop at J_1 if necessary, we can arrange that its length is odd. Hence, $J_1,...,J_{n-1}$ are all distinct and thus a permutation of $I_1,...,I_{n-1}$. Similarly, we cannot have $J_i \to J_k$ if k > i+1 or if k=1 and $i \neq 1,n-1$. Suppose $J_1 = I_k = [a,b]$. Since $\circlearrowleft J_1 \to J_2 \Rightarrow J_2$ is adjacent to J_1 and either

$$x_k = a, \ x_{k+1} = f(a), \ x_{k-1} = f^2(a)$$

or

$$x_{k+1} = b$$
, $x_k = f(b)$, $x_{k+2} = f^2(b)$.

Proof of Lemma 8

Consider the first case, the argument in the second being similar. If $f^3(a) < f^2(a)$ then $J_2 \to J_1$, which is forbidden. Hence $f^3(a) > f^2(a)$.

Proof of Lemma 8

Consider the first case, the argument in the second being similar. If $f^3(a) < f^2(a)$ then $J_2 \to J_1$, which is forbidden. Hence $f^3(a) > f^2(a)$. Since J_2 is not directed to J_k for k>3 it follows that $J_3=[f(a),f^3(a)]$ is adjacent to J_1 on the right.

Proof of Lemma 8

Consider the first case, the argument in the second being similar. If $f^3(a) < f^2(a)$ then $J_2 \to J_1$, which is forbidden. Hence $f^3(a) > f^2(a)$. Since J_2 is not directed to J_k for k>3 it follows that $J_3=[f(a),f^3(a)]$ is adjacent to J_1 on the right. If $f^4(a) > f^3(a)$ then $J_3 \to J_1$, which is forbidden. Hence $f^4(a) < f^2(a)$ and, since J_3 is not directed to J_k for k>4, $J_4=[f^4(a),f^2(a)]$ is adjacent to J_2 on the left.

Proof of Lemma 8

Consider the first case, the argument in the second being similar. If $f^3(a) < f^2(a)$ then $J_2 \to J_1$, which is forbidden. Hence $f^3(a) > f^2(a)$. Since J_2 is not directed to J_k for k>3 it follows that $J_3=[f(a),f^3(a)]$ is adjacent to J_1 on the right. If $f^4(a) > f^3(a)$ then $J_3 \to J_1$, which is forbidden. Hence $f^4(a) < f^2(a)$ and, since J_3 is not directed to J_k for k>4, $J_4=[f^4(a),f^2(a)]$ is adjacent to J_2 on the left. Proceeding in this way we see that the order of the J_i s on the real line is given by

Since the endpoints of $J_{n-1}=[x_1,x_2]$ are mapped into a and $f^{n-2}(a)=x_n$ we have $J_{n-1}\to J_k$ iff k is odd. We found all the arcs in the digraph.

Lemma 9

If f has a periodic orbit of odd period n > 1, then it has periodic points of arbitrary even order and periodic points of arbitrary odd order > n.

Proof. We may assume n is minimal. Then digraph is a Stefan graph as in Lemma 8. If m < n is even then

$$J_{n-1} \to J_{n-m} \to J_{n-m+1} \to \cdots \to J_{n-1}$$

is a primitive cycle of length m. If m > n is even or odd then

$$J_1 \to J_2 \to \cdots \to J_{n-1} \to J_1 \to J_1 \to \cdots \to J_1$$

is a primitive cycle of length m.

