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Sharkovski’s Theorem

Theorem 1
(Sharkovsky, 1964) Let the positive integers be totally ordered in the
following way:

1 � 2 � 22 � 23 � ... � 22 ·5 � 22 ·3 � ... � 2·5 � 2·3 � ... � 7 � 5 � 3

If f has a cycle of period n and m � n, then f also has a periodic orbit
of period m.

Lemma 2
If J is a compact subinterval such that J ⊆ f(J), then f has a fixed
point in J .

Lemma 3
If J,K are compact subintervals such that K ⊆ f(J), then there is a
compact subinterval L ⊆ J such that f(L) = K.
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Proof of Sharkovski’s Theorem

Lemma 4
If J0, J1, ..., Jm are compact subintervals such that Jk ⊆ f(Jk−1)
(1 ≤ k ≤ m), then there is a compact subinterval L ⊆ J0 such that
fm(L) = Jm and fk(L) ⊆ Jk (1 ≤ k < m).
If also J0 ⊆ Jm, then there exists a point y such that fm(y) = y and
fk(y) ∈ Jk (0 ≤ k < m).

Lemma 5
Between any two points of a periodic orbit of period n > 1 there is a
point of a periodic orbit of period less than n.

Let B = {x1 < x2 < · · · < xn} be n-orbit of f .

Definition 1.1
If f(xi) = xsi , 1 ≤ si ≤ n, i = 1, 2, ..., n, then B is associated with cyclic
permutation [

1 2 . . . n
s1 s2 . . . sn

]
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Proof of Sharkovski’s Theorem

Definition 1.2
Let Ii = [xi, xi+1]. Digraph of a cycle is a directed graph of transitions
with vertices I1, I2, · · · , In−1 and oriented edges Ii → Is if Is ⊆ f(Ii).

Properties of Digraphs:

1. ∀ Ij ∃ at least one Ik for which Ij → Ik. Moreover, it is always
possible to choose k 6= j , unless n = 2.

2. ∀ Ik ∃ at least one Ij for which Ij → Ik. Moreover, it is always
possible to choose j 6= k, unless n is even and k = n

2 .

3. Digraph always contains a loop: Ik → Ik.
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Proof of Sharkovski’s Theorem
Fundamental Cycle

Definition 1.3
Given n-orbit, a cycle

J0 → J1 → · · · → Jn−1 → J0

of length n in the digraph is called a Fundamental Cycle (FC) if J0
contains an endpoint c s.t. fk(c) is an endpoint of Jk for 1 ≤ k < n.

FC always exists and unique.

In the FC some vertex must occur at least
twice among J0, ..., Jn−1, since digraph has only n− 1 vertices. On the
other hand, every vertex occurs at most twice, since interval Ik has two
endpoints.

Definition 1.4
Cycle in a digraph is said to be primitive if it does not consisit entirely of
a cycle of smaller length described several times.

If FC contains Ik twice then it can be decomposed into two cycles of
smaller length, each of which contains Ik once, and consequently is
primitive.
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Proof of Sharkovski’s Theorem
Straffin’s Lemma

Lemma 6
Suppose f has a periodic point of period n > 1. If the associated digraph
contains a primitive cycle

J0 → J1 → · · · → Jm−1 → J0

of length m, then f has a periodic point y of period m such that
fk(y) ∈ Jk(0 ≤ k < m).

Proof. J1 ⊆ f(J0), J2 ⊆ f(J1), · · · , Jm−1 ⊆ f(Jm−2), J0 ⊆ f(Jm−1)
Lemma 4 (w. Jm = J0) ⇒ ∃ y ∈ J0 fm(y) = y, fk(y) ∈ Jk(0 ≤ k < m)
Either m is a period of y or period of y is a factor of m. If y is not an
endpoint of J0, then m is a period of y since cycle is primitive. Assume y
is an endpoint of J0. Since y is an element of n-orbit ⇒ n is a divisor of
m. We have Jk ⊆ f(Jk−1) and fk(y) ∈ Jk ⇒ Jk is defined uniquely and
moreover, cycle is a multiple of the FC. This is a contradiction, unless
n = m, since cycle is primitive.
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Proof of Sharkovski’s Theorem
Straffin’s Lemma ⇒ 3 ≺ m ≺ 2 ≺ 1

Suppose f has a 3-orbit: f(c) < c < f2(c) with corresponding digraph

� I1 � I2

I1 → I1 ⇒ there is a fixed point; I1 → I2 → I1 ⇒ there is a 2-orbit
∀ positive integer m > 2 there is an m-orbit corresponding to primitive
cycle of length m: I1 → I2 → I1 → I1 → · · · → I1

Lemma 7
If f has a periodic point of period > 1, then it has a fixed point and a
periodic point of period 2.

Proof. Digraph has a loop ⇒ there is a fixed point. Let n > 1 be the
least positive integer such that f has a periodic point of period n. If
n > 2 decompose FC into two primitive cycles. Since at least one of
these has length greater than 1, by Straffin’s lemma we deduce there is a
periodic point of period strictly between 1 and n.
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Proof of Sharkovski’s Theorem
Stefan Orbits

Lemma 8
Suppose f has a periodic orbit of odd period n > 1, but no periodic orbit
of odd period strictly between 1 and n. If c is the midpoint of the orbit
of odd period n, then the points of this orbit have the order

fn−1(c) < fn−3(c) < · · · < f2(c) < c < f(c) < · · · < fn−2(c)

or the inverse order

fn−2(c) < · · · < f(c) < c < f2(c) < · · · < fn−3(c) < fn−1(c)

and associated digraph is given in the figure, where J1 =< c, f(c) > and
Jk =< fk−2(c), fk(c) > for 1 < k < n.

J1 J2 J3 Jn−3 Jn−2 Jn−1· · ·
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Proof of Sharkovski’s Theorem
Proof of Lemma 8

Proof. Decompose FC into two primitive cycles, one of which has odd
length.

Its length must be 1! Thus FC has the form

J1 → J1 → J2 → · · · → Jn−1 → J1

where Ji 6= J1 for 1 < i < n. If Ji = Jk, 1 < i < k < n, then we obtain
a smaller primitive cycle, and by excluding the loop at J1 if necessary, we
can arrange that its length is odd. Hence, J1, ..., Jn−1 are all distinct and
thus a permutation of I1, ..., In−1. Similarly, we cannot have Ji → Jk if
k > i+ 1 or if k = 1 and i 6= 1, n− 1. Suppose J1 = Ik = [a, b]. Since
� J1 → J2 ⇒ J2 is adjacent to J1 and either

xk = a, xk+1 = f(a), xk−1 = f2(a)

or
xk+1 = b, xk = f(b), xk+2 = f2(b).
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Proof of Sharkovski’s Theorem
Proof of Lemma 8

Consider the first case, the argument in the second being similar. If
f3(a) < f2(a) then J2 → J1, which is forbidden. Hence f3(a) > f2(a).

Since J2 is not directed to Jk for k > 3 it follows that J3 = [f(a), f3(a)]
is adjacent to J1 on the right. If f4(a) > f3(a) then J3 → J1, which is
forbidden. Hence f4(a) < f2(a) and, since J3 is not directed to Jk for
k > 4, J4 = [f4(a), f2(a)] is adjacent to J2 on the left. Proceeding in
this way we see that the order of the Jis on the real line is given by

fn−1(a) fn−3(a) f4(a) f2(a) f (a) f3(a) fn−4(a) fn−2(a)a

Jn−1 J4 J2 J1 J3 Jn−2

· · · · · ·

Since the endpoints of Jn−1 = [x1, x2] are mapped into a and
fn−2(a) = xn we have Jn−1 → Jk iff k is odd. We found all the arcs in
the digraph.
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Proof of Sharkovski’s Theorem
Proof of Lemma 8

Consider the first case, the argument in the second being similar. If
f3(a) < f2(a) then J2 → J1, which is forbidden. Hence f3(a) > f2(a).
Since J2 is not directed to Jk for k > 3 it follows that J3 = [f(a), f3(a)]
is adjacent to J1 on the right. If f4(a) > f3(a) then J3 → J1, which is
forbidden. Hence f4(a) < f2(a) and, since J3 is not directed to Jk for
k > 4, J4 = [f4(a), f2(a)] is adjacent to J2 on the left.

Proceeding in
this way we see that the order of the Jis on the real line is given by

fn−1(a) fn−3(a) f4(a) f2(a) f (a) f3(a) fn−4(a) fn−2(a)a
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· · · · · ·

Since the endpoints of Jn−1 = [x1, x2] are mapped into a and
fn−2(a) = xn we have Jn−1 → Jk iff k is odd. We found all the arcs in
the digraph.

Ugur G. Abdulla Topological Dynamics and Universality in Chaos II. Proof of Sharkovski’s Theorem



10

Proof of Sharkovski’s Theorem
Proof of Lemma 8

Consider the first case, the argument in the second being similar. If
f3(a) < f2(a) then J2 → J1, which is forbidden. Hence f3(a) > f2(a).
Since J2 is not directed to Jk for k > 3 it follows that J3 = [f(a), f3(a)]
is adjacent to J1 on the right. If f4(a) > f3(a) then J3 → J1, which is
forbidden. Hence f4(a) < f2(a) and, since J3 is not directed to Jk for
k > 4, J4 = [f4(a), f2(a)] is adjacent to J2 on the left. Proceeding in
this way we see that the order of the Jis on the real line is given by

fn−1(a) fn−3(a) f4(a) f2(a) f (a) f3(a) fn−4(a) fn−2(a)a

Jn−1 J4 J2 J1 J3 Jn−2

· · · · · ·

Since the endpoints of Jn−1 = [x1, x2] are mapped into a and
fn−2(a) = xn we have Jn−1 → Jk iff k is odd. We found all the arcs in
the digraph.

Ugur G. Abdulla Topological Dynamics and Universality in Chaos II. Proof of Sharkovski’s Theorem



11

Proof of Sharkovski’s Theorem

Lemma 9
If f has a periodic orbit of odd period n > 1, then it has periodic points
of arbitrary even order and periodic points of arbitrary odd order > n.

Proof. We may assume n is minimal. Then digraph is a Stefan graph as
in Lemma 8. If m < n is even then

Jn−1 → Jn−m → Jn−m+1 → · · · → Jn−1

is a primitive cycle of length m. If m > n is even or odd then

J1 → J2 → · · · → Jn−1 → J1 → J1 → · · · → J1

is a primitive cycle of length m.
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