Topological Dynamics and Universality in Chaos
I. Proof of Sharkovski’s Theorem

Ugur G. Abdulla

FIT Colloquium

May 30, 2014
Let $f : I \rightarrow I$ be a continuous map, and I be an interval. *Interval* is a connected subset of the real line which contains more than one point. $\langle a, b \rangle$ is a closed interval with endpoints a and b.

\[f^1 = f, \quad f^{n+1} = f \circ f^n, \quad n \geq 1 \]
Sharkovski’s Theorem

\{f^n(x) : n \geq 0\} be an orbit of \(x\). \(c \in I\) is a fixed point if \(f(c) = c\). If \(I = [a, b]\) is compact \(\Rightarrow \exists\) a fixed point \(c \in I\), since

\[f(a) - a \geq 0 \geq f(b) - b \]

A point \(c \in I\) is said to be periodic point of \(f\) with period \(m\) if \(f^m(c) = c, f^k(c) \neq c\) for \(1 \leq k < m\). Periodic \(m\)-orbit is

\[c, f(c), f^2(c), \ldots, f^{m-1}(c) \]

Theorem 1

(Sharkovsky, 1964) Let the positive integers be totally ordered in the following way:

\[1 \succ 2 \succ 2^2 \succ 2^3 \succ \ldots \succ 2^2 \cdot 5 \succ 2^2 \cdot 3 \succ \ldots \succ 2 \cdot 5 \succ 2 \cdot 3 \succ \ldots \succ 7 \succ 5 \succ 3 \]

If \(f\) has a cycle of period \(n\) and \(m \succ n\), then \(f\) also has a periodic orbit of period \(m\).
Proof of Sharkovski’s Theorem

References

Lemma 2
If J is a compact subinterval such that $J \subseteq f(J)$, then f has a fixed point in J.

Proof. If $J = [a, b]$ then for some $c, d \in J$ we have $f(c) = a$, $f(d) = b$. Thus $f(c) \leq c$, $f(d) \geq d$, and by the intermediate value theorem, there exists $c_* \in [a, b]$ such that $f(c_*) = c_*$. □

Lemma 3
If J, K are compact subintervals such that $K \subseteq f(J)$, then there is a compact subinterval $L \subseteq J$ such that $f(L) = K$.

Proof. Let $K = [a, b], c = \sup\{x \in J : f(x) = a\}$. If $f(x) = b$ for some $x \in J$ with $x > c$, let d be the least and take $L = [c, d]$. Otherwise, $f(x) = b$ for some $x \in J$ with $x < c$. Let c' be the greatest and let $d' \leq c$ be the least $x \in J$ with $x > c'$ for which $f(x) = a$. Then we can take $L = [c', d']$. □
Proof of Sharkovski’s Theorem

Lemma 4

If $J_0, J_1, ..., J_m$ are compact subintervals such that $J_k \subseteq f(J_{k-1})$ $(1 \leq k \leq m)$, then there is a compact subinterval $L \subseteq J_0$ such that $f^m(L) = J_m$ and $f^k(L) \subseteq J_k$ $(1 \leq k < m)$. If also $J_0 \subseteq J_m$, then there exists a point y such that $f^m(y) = y$ and $f^k(y) \in J_k$ $(0 \leq k < m)$.

Proof. Note that the first assertion holds for $m = 1$ due to Lemma 3:

$$J_1 \subseteq f(J_0) \Rightarrow \exists L \subseteq J_0, f(L) = J_1$$

Prove by induction: let $m > 1$ be fixed and assume the assertion is true for all smaller values. We have

$$J_1 \subseteq f(J_0), J_2 \subseteq f(J_1), ..., J_{m-1} \subseteq f(J_{m-2}), J_m \subseteq f(J_{m-1})$$

Induction assumption applied to last $m - 1$ relations \Rightarrow

$$\exists L' \subseteq J_1 : f^{m-1}(L') = J_m, f^k(L') \subseteq J_{k+1}, 1 \leq k < m - 1$$
Proof of Sharkovski’s Theorem

Now we have $L' \subseteq J_1 \subseteq f(J_0) \Rightarrow \exists L \subseteq J_0$ such that $f(L) = L' \subseteq J_1 \Rightarrow$

$$f^m(L) = f^{m-1}(L') = J_m; \quad f^k(L) = f^{k-1}(L') \subseteq J_k, \quad 2 \leq k < m$$

Hence first assertion of the lemma is proved.

If also $J_0 \subseteq J_m$, from the first assertion \Rightarrow

$$\exists L \subseteq J_0: \quad f^m(L) = J_m \supseteq J_0 \supseteq L$$

and by Lemma 2 we have

$$\exists c \in L \subseteq J_0: \quad f^m(c) = c, \quad \text{and} \quad f^k(c) \subseteq J_k, \quad 1 \leq k < m$$

Lemma 4 is proved.
Lemma 5

Between any two points of a periodic orbit of period \(n > 1 \) there is a point of a periodic orbit of period less than \(n \).

Proof. Let \(a < b \) are two adjacent points of \(n \)-orbit. Consider all \(m < n \) such that \(f^m(b) < b \). There is at least one such \(m \). Since there is one more point of the orbit to the left of \(b \) than to the left of \(a \), for some \(m \) such that \(1 \leq m < n \) we have \(f^m(a) > a, f^m(b) < b \). If \(f^m \) is defined on \([a, b]\), then \(\exists c \in (a, b) \ f^m(c) = c \).

Assume \(f^m \) is not defined throughout \([a, b]\). Let \(J_k = \langle f^k(a), f^k(b) \rangle \), \(1 \leq k \leq m \). We have

\[
J_k \subseteq f(J_{k-1}), \ 1 \leq k \leq m
\]

We also have \(J_0 \subseteq J_m \), since \(f^m(a) \geq b, f^m(b) \leq a \). hence, the assertion of the Lemma follows from Lemma 4.
Proof of Sharkovski’s Theorem

Let \(B = \{x_1 < x_2 < \cdots < x_n\} \) be \(n \)-orbit of \(f \).

Definition 1.1

If \(f(x_i) = x_{s_i}, 1 \leq s_i \leq n, i = 1, 2, \ldots, n \), then \(B \) is associated with cyclic permutation\
\[
\begin{bmatrix}
1 & 2 & \cdots & n \\
 s_1 & s_2 & \cdots & s_n \\
\end{bmatrix}
\]

Definition 1.2

Let \(I_i = [x_i, x_{i+1}] \). Digraph of a cycle is a directed graph of transitions with vertices \(I_1, I_2, \ldots, I_{n-1} \) and oriented edges \(I_i \to I_s \) if \(I_s \subseteq f(I_i) \).
Proof of Sharkovski’s Theorem

Properties of Digraphs:

1. \(\forall I_j \ni \text{at least one } I_k \text{ for which } I_j \rightarrow I_k. \) Moreover, it is always possible to choose \(k \neq j \), unless \(n = 2 \).

2. \(\forall I_k \ni \text{at least one } I_j \text{ for which } I_j \rightarrow I_k. \) Moreover, it is always possible to choose \(j \neq k \), unless \(n \) is even and \(k = \frac{n}{2} \).

Proof: Suppose there is no \(j \neq k \) such that \(I_j \rightarrow I_k \). Then if \(i \neq k \),
\[
 f(x_i) \leq x_k \implies f(x_{i+1}) \leq x_k \quad \text{and} \quad f(x_i) \geq x_{k+1} \implies f(x_{i+1}) \geq x_{k+1}.
\]
If \(f(x_{k+1}) \geq x_{k+1} \implies f(x_i) \geq x_{k+1} \) for \(k < i \leq n \Rightarrow \text{proper subset } \{x_{k+1}, \ldots, x_n\} \text{ is mapped to itself. Hence, } f(x_{k+1}) \leq x_k, \text{ and similarly } f(x_k) \geq x_{k+1}, \text{ and accordingly there is a loop } I_k \rightarrow I_k.
\]
\[
 f(x_i) \leq x_k, k < i \leq n \Rightarrow n - k \leq k \Rightarrow n \leq 2k,
\]
\[
 f(x_i) \geq x_{k+1}, 1 \leq i \leq k \Rightarrow k \leq n - k \Rightarrow n \geq 2k \Rightarrow n = 2k \hspace{1cm} \square
\]

3. Digraph always contains a loop

We have \(f(x_1) > x_1, f(x_n) < x_n \). Let
\[
 k = \min\{1 \leq j < n : f(x_j) \geq x_{j+1}, f(x_{j+1}) \leq x_j\}
\]
Then \(I_k \rightarrow I_k \).
Proof of Sharkovski’s Theorem

Fundamental Cycle

Definition 1.3

Given \(n \)-*orbit, a cycle*

\[
J_0 \rightarrow J_1 \rightarrow \cdots \rightarrow J_{n-1} \rightarrow J_0
\]

of length \(n \) *in the digraph is called a Fundamental Cycle (FC) if* \(J_0 \)

contains an endpoint \(c \) *s.t. \(f^k(c) \) is an endpoint of* \(J_k \) *for* \(1 \leq k < n \).*

FC always exists and unique. In the FC some vertex must occur at least twice among \(J_0, \ldots, J_{n-1} \), since digraph has only \(n - 1 \) vertices. On the other hand, every vertex occurs at most twice, since interval \(I_k \) has two endpoints.

Definition 1.4

Cycle in a digraph is said to be primitive if it does not consist entirely of a cycle of smaller length described several times.

If FC contains \(I_k \) twice then it can be decomposed into two cycles of smaller length, each of which contains \(I_k \) once, and consequently is primitive.
Lemma 6

Suppose \(f \) has a periodic point of period \(n > 1 \). If the associated digraph contains a primitive cycle

\[
J_0 \rightarrow J_1 \rightarrow \cdots \rightarrow J_{m-1} \rightarrow J_0
\]

of length \(m \), then \(f \) has a periodic point \(y \) of period \(m \) such that \(f^k(y) \in J_k (0 \leq k < m) \).

Proof. \(J_1 \subseteq f(J_0), J_2 \subseteq f(J_1), \cdots, J_{m-1} \subseteq f(J_{m-2}), J_0 \subseteq f(J_{m-1}) \)

Lemma 4 (w. \(J_m = J_0 \)) \(\Rightarrow \exists \ y \in J_0 \ f^m(y) = y, \ f^k(y) \in J_k (0 \leq k < m) \)

Either \(m \) is a period of \(y \) or period of \(y \) is a factor of \(m \). If \(y \) is not an endpoint of \(J_0 \), then \(m \) is a period of \(y \) since cycle is primitive. Assume \(y \) is an endpoint of \(J_0 \). Since \(y \) is an element of \(n \)-orbit \(\Rightarrow n \) is a divisor of \(m \). We have \(J_k \subseteq f(J_{k-1}) \) and \(f^k(y) \in J_k \) \(\Rightarrow J_k \) is defined uniquely and moreover, cycle is a multiple of the FC. Contradiction, since cycle is primitive.
Proof of Sharkovski’s Theorem

Straffin’s Lemma \(\Rightarrow \) \(3 < m < 2 < 1 \)

Suppose \(f \) has a 3-orbit: \(f(c) < c < f^2(c) \) with corresponding digraph

\[
\circ I_1 \leftrightarrow I_2
\]

\(I_1 \rightarrow I_1 \Rightarrow \) there is a fixed point; \(I_1 \rightarrow I_2 \rightarrow I_1 \Rightarrow \) there is a 2-orbit

\(\forall \) positive integer \(m > 2 \) there is an \(m \)-orbit corresponding to primitive cycle of length \(m \): \(I_1 \rightarrow I_2 \rightarrow I_1 \rightarrow I_1 \rightarrow \cdots \rightarrow I_1 \)

Lemma 7

If \(f \) has a periodic point of period \(> 1 \), then it has a fixed point and a periodic point of period 2.

Proof. Digraph has a loop \(\Rightarrow \) there is a fixed point. Let \(n > 1 \) be the least positive integer such that \(f \) has a periodic point of period \(n \). If \(n > 2 \) decompose FC into two primitive cycles. Since at least one of these has length greater than 1, by Straffin’s lemma we deduce there is a periodic point of period strictly between 1 and \(n \).
Lemma 8
Suppose \(f \) has a periodic orbit of odd period \(n > 1 \), but no periodic orbit of odd period strictly between 1 and \(n \). If \(c \) is the midpoint of the orbit of odd period \(n \), then the points of this orbit have the order

\[
f^{n-1}(c) < f^{n-3}(c) < \cdots < f^2(c) < c < f(c) < \cdots < f^{n-2}(c)
\]
or the inverse order

\[
f^{n-2}(c) < \cdots < f(c) < c < f^2(c) < \cdots < f^{n-3}(c) < f^{n-1}(c)
\]

and associated digraph is given in the figure, where \(J_1 = < c, f(c) > \) and \(J_k = < f^{k-2}(c), f^k(c) > \) for \(1 < k < n \).
Proof. Decompose FC into two primitive cycles, one of which has odd length. Its length must be 1! Thus FC has the form

\[J_1 \rightarrow J_1 \rightarrow J_2 \rightarrow \cdots \rightarrow J_{n-1} \rightarrow J_1 \]

where \(J_i \neq J_1 \) for \(1 < i < n \). If \(J_i = J_k, 1 < i < k < n \), then we obtain a smaller primitive cycle, and by excluding the loop at \(J_1 \) if necessary, we can arrange that its length is odd. Hence, \(J_1, \ldots, J_{n-1} \) are all distinct and thus a permutation of \(I_1, \ldots, I_{n-1} \). Similarly, we cannot have \(J_i \rightarrow J_k \) if \(k > i + 1 \) or if \(k = 1 \) and \(i \neq 1, n + 1 \). Suppose \(J_1 = I_k = [a, b] \). Since \(\bigcirc J_1 \rightarrow J_2 \Rightarrow J_2 \) is adjacent to \(J_1 \) and either

\[x_k = a, \; x_{k+1} = f(a), \; x_{k-1} = f^2(a) \]

or

\[x_{k+1} = b, \; x_k = f(b), \; x_{k+2} = f^2(b). \]
Consider the first case, the argument in the second being similar. If $f^3(a) < f^2(a)$ then $J_2 \rightarrow J_1$, which is forbidden. Hence $f^3(a) > f^2(a)$. Since J_2 is not directed to J_k for $k > 3$ it follows that $J_3 = [f(a), f^3(a)]$ is adjacent to J_1 on the right. If $f^4(a) > f^3(a)$ then $J_3 \rightarrow J_1$, which is forbidden. Hence $f^4(a) < f^2(a)$ and, since J_3 is not directed to J_k for $k > 4$, $J_4 = [f^4(a), f^2(a)]$ is adjacent to J_2 on the left. Proceeding in this way we see that the order of the J_is on the real line is given by

$$
\begin{array}{cccccccc}
J_{n-1} & \cdots & J_4 & J_2 & J_1 & J_3 & \cdots & J_{n-2} \\
 f^{n-1}(a) & f^{n-3}(a) & f^4(a) & f^2(a) & a & f(a) & f^3(a) & \cdots & f^{n-4}(a) & f^{n-2}(a)
\end{array}
$$

Since the endpoints of $J_{n-1} = [x_1, x_2]$ are mapped into a and $f^{n-2}(a) = x_n$ we have $J_{n-1} \rightarrow J_k$ iff k is odd. We found all the arcs in the digraph. \square