II. Weak Solutions and Uniqueness

PDF Version

### Weak Solutions

Let me remind you what I did in a previous lecture. I considered the problem

\begin{align}

u_{t}-\text{div}\big( u^{\sigma} \nabla u\big) &=0,~x \in\R^{N},~t>0; \ \sigma > 0,\label{eq:inst-pme-1}\\

\int_{\R^{N}}u(x,t)\,dx &=1,~t > 0\label{eq:inst-pme-2}\\

u(x,0) = \delta(x)\label{eq:inst-pme-3}

\end{align}

and constructed instantaneous point-source solution, also called the Zeldovich-Kompaneets-Barenblatt (ZKB) solution.

\begin{equation} u_*(x,t)=t^{-\frac{N}{2+N\sigma}}\left[\frac{\sigma}{2(2+N\sigma)} \left( \eta_{0}^{2}-\frac{|x|^{2}}{t^{\frac{2}{2+N\sigma}}}\right)_{+} \right]^{\frac{1}{\sigma}}\end{equation}

Note that the nonlinear diffusion equation is invariant under translation of time and space coordinate, and the solution to the problem

\[ \begin{cases}

u_{t}=\text{div}\big(u^{\sigma }u\big),~&(x,t) \in \R^{N}\times \R_{+}\\

u(x,0)=u_*(x,T),~&x \in \R^{N}

\end{cases}\]

is exactly $u_*(x,t+T)$, which has compact support for all $t\geq 0$.

However, several important questions are left open. First of all, ZKB solution is not a classical solution: it is not even differentiable on the boundary of the support. First important question which we need to answer is the following: In what sense is $u_*$ actually a solution of the problem? Hence, we need to define the notion of the weak solution. Second important question we need to answer is the following: May be there is a smooth solution of the same problem with different properties, and ZKB solution is just physically irrelevant mathematical example. Main goal of this lecture is to answer these important questions.

Continue reading NPDE Lecture 2 Discussion